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Abstract Superscripts/Subscripts

High speed linear aerodynamic theories like piston theory R = real part of quantity
and Newtonian impact theory are relatively inexpensive to use I = imaginary part of quantity
for flutter analysis. These theories have limited areas of ss = steady state or static aeroelastic value of quantity
applicability depending on the configuration and the flow ,,, = free stream value of quantity
conditions. In addition, these theories lack the ability to capture
viscous, shock and real gas effects. CFD methods can model all
of these effects accurately, but the unsteady calculations required Introduction
for flutter are expensive and often impractical. This paper
describes a method for using steady CFD calculations to The NASP vehicle in its ascent trajectory will be required to
approximate the generalized aerodynamic forces for a flutter fly through an extraordinary range of Mach number conditions.
analysis. Example two-and three-dimensional aerodynamic Presently, reliable and accurate linear lifting surface theory codes
force calculations are provided. In addition, a flutter analysis of exist for predicting unsteady aerodynamic forces and performing
a NASP-type wing will be discussed, flutter analyses for general configurations at subsonic Math

numbers and low supersonic Mach numbers. For Mach
numbers above 3.0, methods such as piston theoryl and
Newtonian impact theory2 have been used to predict the

AO = real part of GAF unsteady aerodynamic forces. However at the higher Maeh
AI = imaginary part of GAF numbers, the validity of using these quasi-steady methods
AIC = aerodynamic influence matrix becomes more questionable.

b = wing semichord Piston theory and Newtonian impact theory are both based
Cp = pressure coefficient, (p-p**)/_ on the assumption that the flow is a point function, that is, the
d = arbitrary scale factor, _tj/V** pressures are only dependent upon the local conditions. The
GAF = generalized aerodynamic force matrix validity in using these methods is an issue involving both the
k = reduced frequency, oYa/V** speed range and the complexity of the vehicle geometry. For
p = pressure piston theory to be valid, it is necessary to have a narrow flow

qj = jth generalizedcoordinate region between the aerodynamic surface and the shock impartedby the surface's leading edge. However, the locations of these
qj = arbitraryscale factor used in calculation of real regions can change as a result of changes in speed or vehicle

pressures forj thmode angle of attack. In any case, if the flow is such that the shock
: envelops the aerodynamic surface, then Newtonian impact
qj = arbitrary scale factor used in calculation of theory could be used. An aspect of the aerodynamics that is

imaginary pressures forj thmode totally disregarded by both of these theories is the interaction
= dynamic pressure, ll2p**V**2 between, and the edge effects of, the various aerodynamic

S = surface grid contour surfaces. Also not modeled are viscous, real gas and ionization
So = initial surface grid contour effects that may occur at very high Mach numbers.

Sj = surface gridcontour deformed into jth mode shape Generally, piston and Newtonian impact theories can not
t = time account for the many unknowns at hypersonic conditions and
V = velocity should be used only when "approximate" aerodynamics are
w = normal wash acceptable, such as, during the preliminary stages of aircraft
Ws = steady state mass flux vector design or analysis. The best way to determine the accuracy and
x = x--eeordinate region of applicability of these simple methods is by comparing
y = y-coordinate the aerodynamic force predictions with results from more exact
Z = vertical deformation of surface aerodynamic theories, such as, Euler or Navier-Stokes theories.
Z0,j = complex amplitude ofjth mode The quasi-steady theory, described next, is being developed to

• z = z-coordinate provide accurate predictions of aeroelastic response for those
flight conditions where the assumptions defined by these simple

¢j = jth mode shape function methods are violated.
ej = jth integrated mode shape function for calculating

imaginary pressures Unsteady CFD calculations may be used for flutter
p = density calculations and provide improved accuracy over piston and
o_ = circular frequency impact theories. The unsteady CFD calculations required to

determine a flutter point are computationally expensive. Steady
Aerospace Engineer, Member AIAA. CFD solutions, on the other hand, are easier to obtain. This

a, Staff Engineer, Senior Member AIAA. paperdescribes the development of a quasi-steady approach for



using steady CFD calculations to estimate the unsteady The normalwash boundary condition shown in equation (4)
aerodynamic forces necessary for flutter calculations. The is used in an aerodynamic calculation to obtain the pressure

approach uses two separate CFD solutions per vibratory mode: differential for the ithmode (Apj).one solution for the real part of the pressures and another for the
imaginary part of the pressures. These pressures are then used
to calculate the generalized aerodynamic force (GAF) matrices wj(x, y) = o_j / Ox -t-i(k / b)Oj (4)
that can be used in a conventional frequency domain flutter
analysis. The elements of the quasi-steady generalized aerodynamic

force (GAF) matrix are defined by
This paper is subdivided into three main sections. The first

section describes the concept of quasi-steady aerodynamics. It GAFij = ffApj(x,y)_Pi(x,y)dxdy (5)
is designed to acquaint the unfamiliar reader with basic concepts Area
that will be built upon in the development of the quasi-steady
CFD method. The second section describes the method and where i represents the displacement mode (ith rigid or elastic
presents example two- and three-dimensional aerodynamic mode deformation) and j represents the pressure mode (pressure
calculations. The third section discusses flutter analyses of a distribution resulting from jth rigid or elastic mode deformation).high-speed wing at several Mach numbers. The example quasi-

steady CFD calculations will be compared with unsteady CFD For quasi-steady flow, the elements of the GAF matrix can
calculations were available, and all the results will be compared be described as linear functions of reduced frequency and have
with piston theory results, the form,

Ouasi-Steadv Concept GAF(i°9)ij = Aoij + i (k/b) Alij (6)

The quasi-steady concept as applied to complex hypersonic where A0 and A1 are real matrices. With the GAF matrices
flow conditions takes advantage of small perturbationsand the accurately represented by linear functions of the reduced
small time-constants of high velocity flow. In applying the frequency,as in equation(6), the aeroelasticequationsof motion
small perturbationsto the flow, it is assumed that the complex in state-space form can be developed. The next section
flow phenomenadescribedby the Euleror Navier-Stokes theory describes how these matriceswill be obtained from steady CFD
varies linearly if the vehicular motions induced into the flow are calculations.
considered small enough. With small perturbations, various
concepts of frequency domain and superpositioncan be applied
directly to CFD results as it has been employed in piston theory
and linear potential theory. Description of Ouasi.Steady Method

The objective of this work is to incorporate these concepts to The approach described in this section uses the concepts of
the steady pressure distributions and resulting aerodynamic three-dimensional flow for both the boundary conditions and the
forces predicted by Euler or Navier-Stokes theories so that generalized force relationships. As mentioned previously, the
conventional frequency domain flutter analysis approaches can method requires that the flow be perturbed by the aerodynamic
be applied. This approach, which assumes the flow conditions surfaces only by small amounts so that the superposition
change almost instantaneously when perturbed, takes advantage principle can be applied. Also, the method relies on the
of the quasi-steady aspect of the flow physics at high Math separation of the boundary condition into a steady or real part
number conditions and can be explained in terms of the reduced and a motion or imaginary part. A solution of each part of the
frequency, k = bogV,_ boundary conditions constitutes a separate steady CFD solution.

The reduced frequency characterizes the unsteadiness of the The first subsection presents a description of the boundary
flow. As the velocity of the flow becomes very large, the conditions imposed for the quasi-steady CFD method. The
reduced frequency at flutter will eventually fall within the quasi- second and third subsections discuss example two- and three-
steady range (k<<l). Also at high Mach numbers, the flow dimensional calculations, respectively. The CFD flow solver
characteristics become dependent more on local conditions, used was CFL3D 3 which can perform either Euler or Navier-
Thus, for decreasing k or increasing Mach number, the flow Stokes calculations on two- and three-dimensional grids.
characteristics approach a point relationship where pressures are
dictated only by the flow tangencycondition at that point. Annlication of Ouasi-Steadv Boundary Conditions

For the quasi-steady approach, the flow tangeney boundary The CFD quasi-steady method requires only steady CFD
condition is the primary source of the flow unsteadiness at high solutions in which special boundary conditions are used to
Mach numbers. As describedin Equation (1), the quasi-steady provide the appropriatepressuredistributionsfor calculating the
pressuredistributionis obtainedby multiplying the aerodynamic GAF matrices. To obtain the individual parts of the GAF
influence coefficient (AIC) matrix atzero reduced frequency by matrices, two steady state pressure mode solutions are required
the unsteadynormalwash vector w. per vibratory mode. One solution provides the real part of the

pressure, while the other solution provides the imaginary part of
• Ap(x,y) = AIC(k=O) w(x,y,t) (1) the pressure. Only one method is discussed for obtaining the

realpart; however, two methods are proposed for the imaginary
The unsteady normalwash, which defines the kinematic part.

boundaryconditions, is given by The CFD quasi-steady method is a perturbationapproachin
w(x,y,t) = d_Z/oax+ (l/V**) 3"Z/_ (2) which motion is assumed to be small and centered about the

static aeroelastic solution. A symmetric aeroelastic vehicle flying
For harmonic motion, the vertical deformation of the surface at zero angle of attack will experience zero pressure differential

is describe by and its static aeroelastie shape will retain its undeformed shape,
So. In general, however, aeroelastie vehicles are asymmetric?t 11

Z(x,y,t)=_j(.x,Y)Zo,je i_°t= _,#pj(x,y)qj (3) and fly at non zero angles of attack. The resulting staticj=j aeroelasticsolutionresults in non zero steady state pressuresand
structuraldeflections.



Assuming only vertical modal deformation, the general substituting the contribution from the jth mode for Z, the
aeroelastic vehicle shape is relationship becomes

S(x,y,z,t) = Z(x,y,t) 4-Sss(X,y,z) (7) 07(Oj -1 .

Ox = _ (pjqj (12)
where Sss is the static aeroelastic shape of the surface grid.

Since flutter calculations require only the pressures due to the
perturbation motion about Sss, the pressure differentials for the By redefining the generalized coordinate as the modal scale
static aeroelastic solution (ACpss) must be removed from the factor _j and redefining the left hand mode shape function as 0,
unsteady pressures prior the calculating the GAF matrices, equation (12) becomes

• Real Part. To calculate the real part of the pressures the grid oT_j -1
geometry for the static aeroelastic shape is deformed to = V., (_j(x,y)_j

(13)
incorporate mode shape deflections. The boundary condition Ox
imposed by additively deforming the steady state surface grid
geometry into the jth mode shape is Integrating in the x-direction gives the equivalent deformed

shape. For a wing this method is implemented by integrating
from the leading edge to the trailing edge for each spanwise

Sj(x,y,z) = (_j(x,y)tlj + Sss(X,y,z) (8) station

Where _j is the value of the modal scale factor used to scale Oj(x,y) = _ f Oj(x, y)dx (14)
the mode shape deformation by an arbitrarily small amount, Ojis v** X=Xle
the mode shape function, and g is a function that describes the

contour of the deflected structure. The surface computational grid is then deformed by the
integrated mode shape as

Using the deformed grid (g) the pressures for a given Mach
number are calculated using the CFD code. These pressures are ^
then used to calculate the real part of the pressure differential for Sj(x,y, z) = Sss(X,y, z)+ _j(x,y) (15)
the jth mode, where

Using the grid defined by Sj and the CFD flow solver, the

ACpR(x,y)=(CPupper(x,y,qj) -Cplower(X,y, qj))-ACp ss (9) pressure differential between the upper and lower surfaces is

After calculating ACp]i for all the modes, the Ao matrix ean AClpj(X,y) =(Cpupper(x,y,_j)-Cplower(x,y,_j))-ACpss (16)
be calculated from

and the term Alij is

1 ffACpt/(x,y._idxdy (10)Aoij = 7"

qj Area Alij = V..__ ff ACp_(x,y)_idxdy (17)
qj Area

Note that the scale factor value (_)) is included in equation

(10) so that the product of ACpp and 1/_) provides the delta It is convenient to define
pressure per unit generalized coordinate for the j_hmode. _.

d =qj (18)
Imaginary P0X_,Two methods of providing the boundary V_,

conditions necessary for calculating the imaginary part of the
GAF matrices are considered. One method is similar to the which results in the following,
method described for the real part where the grid is deformed to

provide the boundary condition. The other method uses the x=xte
static aeroelastic grid, Sss, but requires that a transpiration _j(x,y) =-d fOj(x,y)dx (19)velocity be applied to the surface of the body. Both of these
approaches are presented here. x=Xle

Integration M¢;hQ_I.The imaginary part of the pressure is Alij =1 ff ACpt.(x,y)Oidxdy (20)
generated by the motion of the wing itself. Generally, most a Area

.t
steady CFD codes require the flow tangeney condition as the
boundary condition quantified by

Transpiration Method. The transpiration boundary condition
Ws . VS = 0 (11) method is another approach for calculating the imaginary part of

the pressures. Again, the method is only applicable to small
,_ where Ws is the steady state mass flux vector and VS is the perturbation theory conditions. A benefit of this method is that

surface gradient representing a surface normal. Because this the surface grid does not need to be deformed into the integrated
relationship is "built into" most CFD codes, to represent the mode shapes. The procedure of deforming the grid can be very
flow tangeney boundary condition it is necessary to time consuming especially for complicated configurations. In

o appropriately modify the mode shape deflections to simulate the the present implementation of the method, the transpiration
imaginarypartoftheboundarycondition, boundaryconditionis addedtotheotherboundaryconditionsas

input to the CFD code. The downwash velocity on the surface
Equation (2) providesthe appropriaterelationshipfor of the bodybecomes

modifying the mode shapes. To obtain a grid shape that ._
provides the same boundarycondition as the vehicle motion, the wj(x,y) =_q_-_-Oj(X,y) (21)downwash is set to zero as described in reference 4. By v..
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The pressure differential between the upper and lower
surface less the steady state pressure differential is

ACIpj (x,y) = (Cpupper (x,y,_j) -Cplower (x,y,_j)) -zaCpss (22)

Using the ACpJ and d from equation (18), the downwash
velocity and the imaginary part of the GAF matrices are
computed as

wj(x,y) = d(_j(x,y) (23)
w

Alij = 1 ff ACpl j(x,Y)_idxdy (24)"Area
Fig. 2. 153X41 grid for calculating the imaginary part of

Examnle Calculations in Two Dimensions thelift coefficient;

This subsection provides example quasi-steady calculations
of the real and imaginary parts of the aerodynamic forces for a Unsteady calculations were performed for the airfoil pitching
two-dimensional airfoil using the quasi-steady CFD (QSCFD) about its leading edge with a reduced frequency of 0.1012 for
method. Two alternative methods of computing these forces are Mach numbers 5 and 10. At Mach 15, extremely small time
shown for comparison. One method is to perform unsteady steps were required to maintain stability and the unsteady
CFD calculations at a low reduced frequency to obtain the answers were not obtained. The real and imaginary parts of the
aerodynamic forces. The other method is to calculate the lift coefficient can be obtained by assuming that the pressures
aerodynamic forces using piston theory. The mode shape take the form of equation (6) and that there are no higher
considered was rigid pitching of an airfoil about its leading edge. harmonics. Thus, the real part of the pressure distribution is

obtained at a point in the pressure time history where maximum
While ACpss is in general non zero, the examples discussed pitch angle and zero angular rate occurs. Similarly, the

in this paper are symmetrical airfoil sections at zero angle of imaginary part of the pressure distribution is obtained at the
attack. Consequently, the steady state shape is equal to the point where pitch angle is zero and angular rate is maximum.
undeformed shape So, and the steady state pressure ACp ss is
zero. Tables 1 and 2 contain results for the real and imaginary

parts of the lift coefficient, respectively. At Math 5 both the real
The 153x41 computational grid used in the two-dimensional and imaginary parts for all the methods were in good agreement.

CFD calculations is shown in figure 1. The airfoil section is 4% At Math 10 the unsteady and quasi-steady answers remain in
thick and representative of current NASP designs. This grid good agreement, while the piston theory answer begins to differ.
was used directly for the unsteady CFD calculations and At Math 15 the piston theory and quasi-steady answers are
deformed as necessary for the QSCFD calculations, significantly different as expected.

The imaginary calculations using the two QSCFD
approaches are compared in table 2. The two methods are in
close agreement at all Mach numbers examined. While both
methods produce nearly the same results, the transpiration
approach is simpler to implement and will be the preferred
approach throughout the paper.

Table 1. Real part of the lift coefficient.

Unsteady CFD i Piston : QSCFD
Mach (k--0.1012) [ Theory i (c_=l°)

Fig. 1. 153X41 grid for two-dimensional calculations. 5 0_01457 :: 0.0139 :: 0.0146

10 0.00773 i 0.00696 i 0.0081
The QSCFD method was performed for Maeh numbersof 5, : :

10 and 15. For the real part,the airfoil was deformed into the 15 NA i 0.00463 i 0.0057
pitching mode shape. Since the mode shape is rigid pitching,
the calculationsneed only be performed with the gridat an angle
of attack. The calculations were performed with an angle of
attack of 1 degree with respect to the far field flow. This 1
degree deflection was consideredto fall within the limits of small Table 2. Imaginary part of the lift coefficient.
perturbationtheory.

UnsteadyCFD:: Piston : QSCFD
Both the integration and transpiration quasi-steady Mach _----0.1012) _ Theory i IntegrationTranspirationapproaches were used to calculate the imaginary partof the lift

coefficient. For the calculation of the imaginary part using the 5 0.00263 ::0.00268 ::0.00297 i 0.00282
integration approach, the grid was deformed into the shape
shown in figure 2. For the calculation of the imaginary part with 10 0.00651 i 0.000545 i 0.000687 i 0.000675
the transpiration approach, a velocity boundary condition was : :
applied to the airfoil surface that was proportionalto the mode 15 NA i 0.0001766 i 0.000294 i 0.000299
shapeas defined by equation(23).



Examvle Calculation in Three Dimensions
-3.9E.2

-5.6E-2
This sub section describes example calculations for a finite .7.3E.2

wing. Here, unsteady results will be compared with QSCFD .9.1E.2
results. The mode shape examined was rigid wing pitching ._.IE-_
about the 65% root chord point. The configuration examined -,.2E-,-1.4E-I

was a generic hypersonic wing having the same airfoil shape as ._._E._
• shown in figure 1 and the planform shown in figure 3. The grid ._.sE._

used in the calculations was the 153X41X37 C-H grid shown -_._E-_
-2.1E-1

figure 4. CFL3D was the CFD code employed. -2.3E.1
-2.4E-1
.2.6E-t

_' -2.8E-1

40.5ft. V
a) QSCFDmethod.

5.2ft.

Fig. 3. Wing planform.

The unsteady calculation was performed at a reduced b) Unsteady CFD method, k--0.0506.frequency of 0.0506 and the magnitude of pitching oscillation
was +1 degree. Two pressure distributions were extracted from
the time history of the unsteady calculation as described in the Fig. 5. Comparison of real pressure coefficient distribution
previous subsection. The real and imaginary pressure computed with QSCFD and unsteady CFD methods.
diswibutions using the quasi-steady and unsteady calculations
are shown in figures 5 and 6, respectively. Good agreement
was achieved for both the real and imaginary parts of the _.4E.2
pressures. _.2E.2

1.1E-2
O,OE-3
7.5E-3
6.0E-3
4+4E-3

2.0E-3
1.4E-3
-1.1E-4
-1.6E-3
-3.1E-3

-4.7E-3
-6,2E-3
-7.7E-3

a) QSCFD method.

, Fig. 4. 153X41X37 C-H grid for the wing.

b) Unsteady CFD method, k--0.0506.

Fig. 6. Comparison of imaginary pressure coefficient
distribution computed with QSCFD and unsteady
CFD methods.



Flutter Analysis Figures 8 and 9 compare the Mach 5 real and imaginary
pressures, respectively, associated with the 4th mode. Figure 8

This section of the paper describes flutter calculations for a indicates good agreement among the three results for the real part
hypersonic wing having eight flexible modes using the QSCFD of the pressures. Figure 9 indicates good agreement between the
method. The planform and computational grid for the wing are imaginary pressures from the QSCFD 2d calculations and the
shown in figures 3 and 4, respectively, piston theory calculations. While similar in character, the

QSCFD 3d imaginary results are somewhat different from the

Calculations were performed at Mach numbers of 5, 10 and others. ,.
15. Three results were obtained at each Mach number. Two of ,.5E-3

7.31=.3

the results were obtained using the QSCFD method to calculate e.,_.3
the unsteady pressures; one with and the other without the ,._E-3
spanwise flux terms included. Neither unsteady CFD flutter 3.oE.3 ,2.4E-3

results nor experimental results were available for this ,.2_-3
configuration. Piston theory results are provided for o.oEo-1.2E-3

comparison. .2,E-3
-3.6E-3

OSCFD GAF Calculations

The subsection describes the QSCFD calculations of the
unsteady pressuresand GAF matrices. Comparisonsof the real
and imaginary parts of the pressure coefficients for flexible
mode 4 at Mach 5 are also provided. Mode 4 was selected
because it will be shown in the next subsection to be the
dominant component of the flutter mode atMach numbers of 5 a) Piston theory calculation.
and 10.

As mentioned earlier,two sets of QSCFD calculations were
performed. One is referredto as the QSCFD 2d results because
the spanwise flux terms were zero. The other is referred to as
the QSCFD 3d results because the spanwise flux terms were
included.

To calculate the real part of the pressure, the undeformed
gridshown in figure 4 was used as a starting point and separate
grids were generated by deforming that grid into shapes
corresponding to each of the eight wing mode shapes. Figure 7 b) QSCFD 2d calculation.
shows the deflection contour for the 4thflexible mode. Each of
these eight grids was used to obtain the wing surface pressure
distribution per unit deformation for each mode and Math
number combination. Using these pressure distributions and the
wing mode shapes, the real parts of the GAF matrices were then
calculated. These values constitute the elements of AO in
equation (6).

c) QSCFD 3d calculation.

Fig. 8. Real part of Mach 5 pressure coefficient contours
=oo associated with mode 4.

Two distinct trends were observed in the pressure contour

ineY_es® plots as Mach number was increased from 5 to 15. First, the
QSCFD 2d and 3d pressure distributions became increasingly
similar. Second, the piston theory pressure distributions became
significantly different from the QSCFD pressures. The effects
of these trends subsequently showed up in the flutter analysis0 100 200 300 400 600

x, inches results described in the next subsection.

Flutter Calculation
Fig. 7. Deflection contour for the 4th flexible mode.

A comparison of the flutter root locus was undertaken for the
different aerodynamic analysis methods and Math numbers.
The purpose of the study was to assess the effect of the GAF
matrices produced by the aerodynamic methods on flutter. The

To calculate the imaginary parts of the pressure, a data file structural parts, that is, the vibration frequencies, generalized
was created for each mode that contained the desired vertical masses, mode shapes, and structural damping, are identical for
velocity on the surface of the wing. By performing separate all cases. The flutter equations of motion were transformed to
steady-state calculations for each mode shape data f'fleand Maeh 1st order form using the ISAC 5 code. This code was used to
number combination, the imaginary parts of the pressures were obtain the AO and A1 aerodynamic matrices as defined by
calculated. These pressure distributions and the mode shapes equation (6). Matched point flutter analyses were performed
were then used to calculate the imaginary parts of the GAF where the altitude range was varied from sea level to 80,000
matrices representedby A1 in equation (6). feet.

6



8.0E-3 The piston theory flutter frequency is in good agreement
7.1E-3 with the QSCFD 2d frequency at Mach 5 indicating similar
6.2E.3 flutter mechanisms. At Mach 10the frequencies of the first and5.3E-3

4,4E-a second instability are consistent indicating similar flutter
3.5E-3 mechanisms for both the QSCFD and piston theory calculations.
2.6E-3 At Mach 15 the piston and QSCFD calculations each predict
,.8E-3 different primary flutter mechanisms. This is attributed to the

I 8.6E-4
.a.6E-s fact that piston theory predicted imaginary GAF elements
+.aE.4 significantly larger than those predicted by the QSCFD
.I.sE.a calculations.
-2.7E-3

f -3.6E-3
-4.5E-3

o_(rad/sec)
a) Pistontheorycalculation. 300

.,,,,..200

____._.._._ 100_f = 129psi

, / =.,--'qd=sopsi
b) QSCFD2dcalculation. -20 " -10 " 0 10 ' 20

a(1/sec)
a) Using piston theory OAF matrices.

m(rad/sec)
3OO

200
c) QSCFD 3d calculation. .--.----

Fig. 9. Imaginary part of Math 5 pressure coefficient

contours associated with mode 4. ._........-.-_ 100_'_qf =169psi
= 50 psi

, , r .,.' • . i
-20 -10 0 10 20

c(1/sec)
b) Using QSCFD 2d OAF matrices.

The resultsforall the flutter analyses are summarized in table m(rad/sec)
3. In all cases the primary mechanism for aeroelastic instability 300
is divergence. The reason for this instability can be attributed to

the pivot point being very far aft on the wing as seen in figure 3.In order to compare effects of the various aerodynamic methods
on flutter, the dynamic pressure of the first and, where _ 200
applicable, the second dynamic instability points are shown, no flutter

Figure 10 shows the root locus results for the three 100
aerodynamic calculations at Mach 5. The root locus plots
generally look very similar for all the aerodynamic methods, and

a hump mode is the cause of the flutter instability for both the /€__.._qd =59pill, QSCFD 2dandpiston theory resultsatMach5. Muchthesame ' •. ' - - ' ., .,
type of behavior is noted for this mode in the QSCFD 3d results. -20 -10 0 10 20
However, the inclusion of the spanwise flux terms into the o(1/sec)
CFL3D calculations has altered the pressures enough to move c) Using QSCFD 3d GAF matrices.+ the hump mode into a stable region as illustrated in figure 10(c).

Fig. 10. Mach 5 root locus results.
Except for the Math 5 result, the QSCFD 2d and 3d results

,are in good agreement for all the quantifies provided in table 3.
!Piston theory is shown to increasingly under-predict flutter and
_livergenee dynamic pressure as compared with the QSCFD
.calculations as Maeh number increases.
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Table3. Comparisonof flutterresults.

Mach number
5 10 15

Aerodynamic methods

qf tof qd qf Cof qd. qf COf qd
psi r/s psi psi r/s psi psi r/s ps_

1st 129 78 50 184 78 66 250 72 81
Piston theory

2nd 537 186 634 181

1st 169 80 50 331 81 109 982 224 271
QSCFD 2d

2nd - - 578 212

1st 59 330 82 114 981 224 267
QSCFD 3s

2rd 586 208

If the quasi-steadymethod can be considered the more Concluding Remarks
accurate method for computing the aerodynamicforces, then
from both the standpoint of the root locusplots and the flutter Because of the extremelyhigh cost of performing time-
and divergencedynamicpressures,piston theoryshowslimited accurateunsteadyCFDcalculationsrequiredfor a flutteranalysis
accuracywithlargeconservatismatelevatedMath numbers, and thelackof other,accurate,computationallyefficientmeans

of obtaining the aerodynamicsat hypersonicMath numbers,a
Recommendation8 newapproachrequiringonlysteadyCFDcomputationshasbeen

developed. The quasi-steady CFD method uses special
All the CFDcalculationspresentedin thispaperusedEuler boundaryconditionsforcomputingthe unsteadypressuresfrom

equations. While solutions of the Euler equations can be steadyCFDcalculations.Thesepressurescan then be usedto
obtainedovera widerangeof flow conditions,viscouseffects calculatethe generalizedaerodynamicforcematricesforuse in
maybe requiredin certaininstancesto get accuratesolutions, conventionalflutteranalyses. The quasi-steadyCFDmethod
Consequently,futureapplicationsof theQSCFDmethodshould wasdemonstratedusingtwo-andthree-dimensionalcalculations
considerusingsolutionsof the Navier-Stokesequationswhen at supersonicandhypersonicMachnumbers.
viscous effects are expected to have a significant impacton
pressuredistributions.

The quasi-steadyCFD aerodynamicsshould be more
Thesamegridwasusedforall the QSCFDcalculationsused accurateandpotentiallylessconservativethanthatobtainedby

in the flutter analyses. To get CFD solutionsof the highest piston and Newton impact theories. More accurate
accuracyit is oftenrequiredthatgridsbedesignedwithsome a aerodynamicswill bringaboutmorerealisticfluttersizingand
prioriknowledgeof the flowfieldsolutionorthatthe CFDcode possiblylighterstructuralweightsforhypersonicvehicles. The
has adaptive mesh refinementcapabilities. Since making quasi-steadytechniquegoes beyondpistontheory by including
computationalgrids is a time consumingprocess, the use of the steady nonlinearaerodynamiceffects of the perturbation
such an adaptivecode is an ideal way to improvesolution point. Thus, this paperhas presentedan efficient meansof
accuracywithoutincreasingtheanalyst'sworkload, usinghigh fidelityaerodynamicsin arelativelycomputationally

efficientflutteranalysis.
While the QSCFD pressureshave been compared with

unsteadypressures for a single mode at a time, the general
applicabilityof the superpositionassumptionhas not been Acknowledgmellt
completely answeredfor flexible modes. In addition, the
QSCFD flutter results have only been compared with The authorswouldlike to thankDr.ThomasA. Zeilerof
calculationsusingpistontheory. To fullyvalidatethe method, LockheedEngineeringandSciencesCompanyforprovidingthe
unsteadyCFDflutteranalysisresultsneedto becomparedwitha structtralmodeshapedataand thepistontheorydatausedin this
QSCFDflutteranalysis, paper. In addition, the authors would also like to thank

Elizabeth Lee-Rauseh of NASA Langley's Unsteady
The selection of the perturbationscale factors was not AerodynamicsBranchforherassistancein gridgenerationand

addressedin thepaper. In highly nonlinearflow the linearized usingCFL3D.
aerodynamicsfrom the QSCFDmethodcouldbe very sensitive
to the quantitieschosenas scale factors. The sensitivitiesof
these scale factorsneed to be consideredwhenperformingthe References
QSCFDanalysis.
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